Prof.Deshmukh R.R. Deft of Chemistry

# Werner's Coordination Chemistry

- Performed systematic studies to understand bonding in coordination compounds.
  - Organic bonding theory and simple ideas of ionic charges were not sufficient.
- Two types of bonding
  - Primary positive charge of the metal ion is balanced by negative ions in the compound.
  - Secondary molecules or ion to the metal ion.
    - Coordination sphere or complex ion.
    - Look at complex on previous slide (primary and secondary)

- Transition metals act as Lewis acids
  - Form complexes/complex ions

$$Fe^{3+}(aq) + 6CN^{-}(aq) \rightarrow Fe(CN)_6^{3-}(aq)$$

Lewis acid Lewis base Complex ion 
$$Ni^{2+}(aq) + 6NH_3(aq) \rightarrow Ni(NH_3)_6^{2+}(aq)$$

Lewis acid Lewis base Complex ion

Complex contains central metal ion bonded to one or more molecules or anions

Lewis acid = metal = center of coordination

Lewis base = ligand = molecules/ions covalently bonded to metal in complex

- Transition metals act as Lewis acids
  - Form complexes/complex ions

$$Fe^{3+}(aq) + 6CN^{-}(aq) \rightarrow [Fe(CN)_6]^{3-}(aq)$$

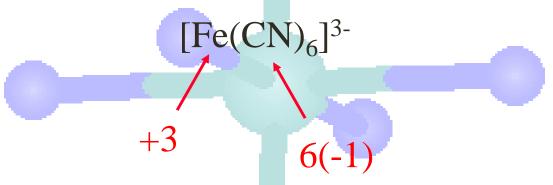
Lewis acid Lewis base Complex ion 
$$Ni^{2+}(aq) + 6NH_3(aq) \rightarrow [Ni(NH_3)_6]^{2+}(aq)$$

Lewis acid Lewis base

Complex ion

Complex with a net charge = complex ion

Complexes have distinct properties

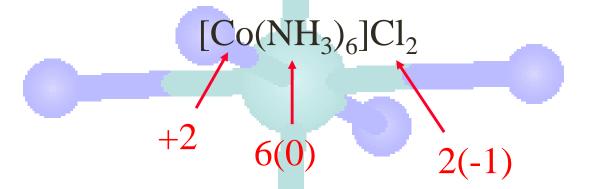

- Coordination compound
  - Compound that contains 1 or more complexes
  - Example
    - $[Co(NH_3)_6]Cl_3$
    - [Cu(NH<sub>3</sub>)<sub>4</sub>][PtCl<sub>4</sub>]
      - [Pt(NH<sub>3</sub>)<sub>2</sub>C

- Coordination sphere
  - Metal and ligands bound to it
- Coordination number
  - number of donor atoms bonded to the central metal atom or ion in the complex
    - Most common = 4, 6
    - Determined by ligands
      - Larger ligands and those that transfer substantial negative charge to metal favor lower coordination numbers

Complex charge = sum of charges on the metal and the ligands

 $[Fe(CN)_6]^{3-}$ 

Complex charge = sum of charges on the metal and the ligands




Neutral charge of coordination compound = sum of charges on metal, ligands, and counterbalancing ions

 $[Co(NH_3)_6]Cl_2$ 

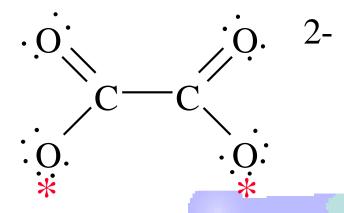
neutral compound

Neutral charge of coordination compound = sum of charges on metal, ligands, and counterbalancing ions



- Ligands
  - classified according to the number of donor atoms
  - Examples
    - monodentate = 1
    - bidentate = 2
    - tetradentate = 4
    - hexadentate = 6
    - polydentate = 2 or more donor atoms

- Ligands
  - classified according to the number of donor atoms
  - Examples
    - monodentate = 1
    - bidentate = 2
    - tetradentate = 4
    - hexadentate = 6


chelating agents

polydentate = 2 or more donor atoms

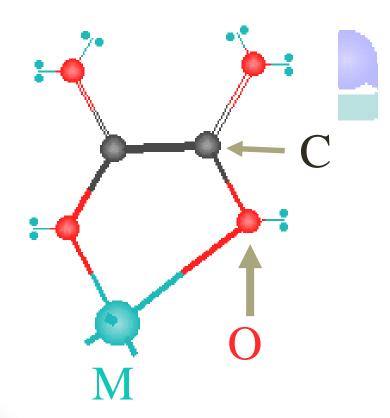
- Monodentate
  - Examples:
    - H<sub>2</sub>O, CN<sup>-</sup>, NH<sub>3</sub>, NO<sub>2</sub><sup>-</sup>, SCN<sup>-</sup>, OH<sup>-</sup>, X<sup>-</sup> (halides), CO, O<sup>2-</sup>
  - Example Complexes
    - $[Co(NH_3)_6]^{3+}$
    - [Fe(SCN)<sub>6</sub>]<sup>3-</sup>

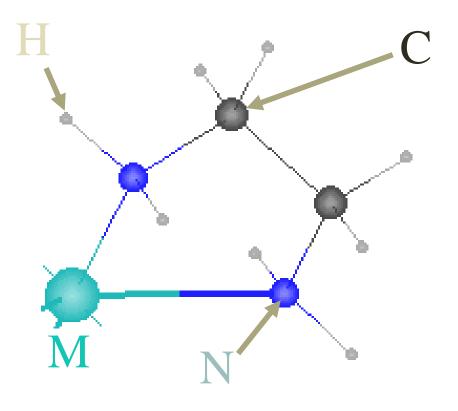
- Bidentate
  - Examples
    - oxalate ion =  $C_2O_4^{2-}$
    - ethylenediamine (en) = NH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>
    - ortho-phenanthroline (o-phen)
  - Example Complexes
    - $[Co(en)_3]^{3+}$
    - $[Cr(C_2O_4)_3]^{3-}$
    - [Fe(NH<sub>3</sub>)<sub>4</sub>(o-phen)]<sup>3+</sup>

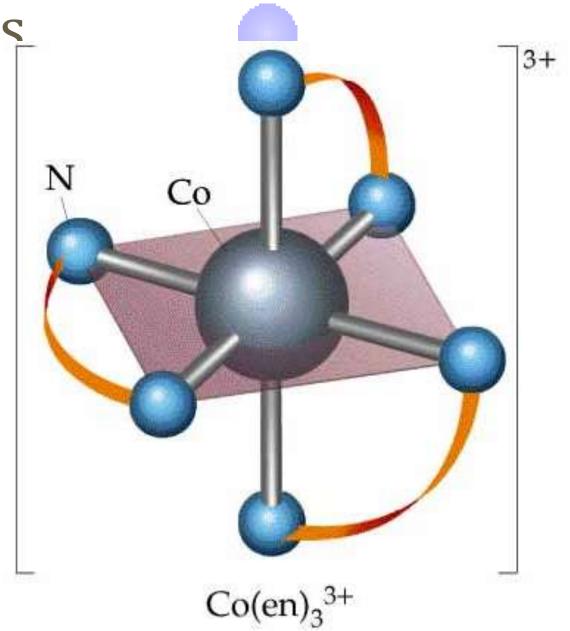
#### oxalate ion





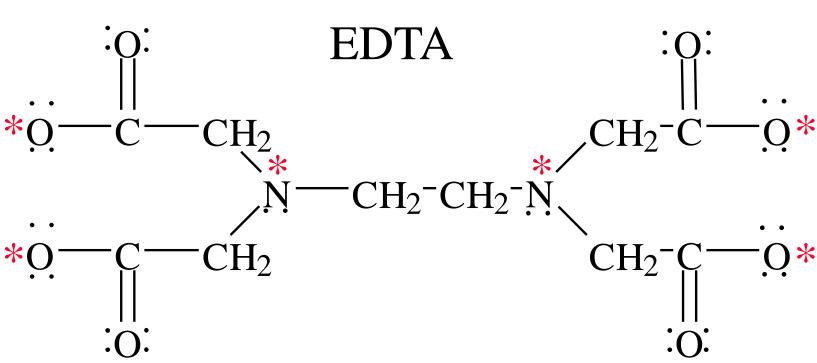

#### ethylenediamine


$$CH_2$$
- $CH_2$ 
 $H_2$ N
 $NH_2$ 


#### ortho-phenanthroline

oxalate ion

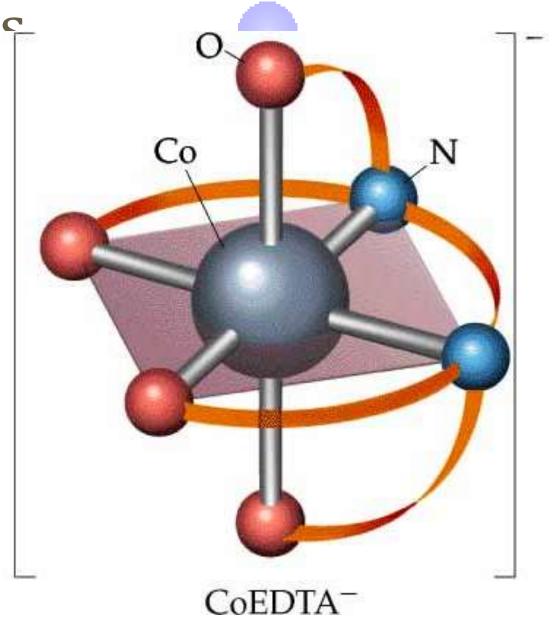









- Hexadentate
  - ethylenediaminetetraacetate (EDTA) =  $(O_2CCH_2)_2N(CH_2)_2N(CH_2CO_2)_2^{4-}$
  - Example Complexes
    - [Fe(EDTA)]<sup>-1</sup>
    - [Co(EDTA)]-1








# Ligands **EDTA**

Ligande



Coordination Number Geometry

2

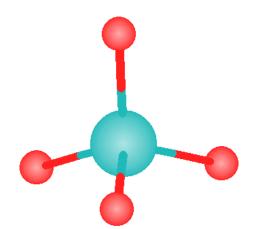


Coordination Number Geometry

2

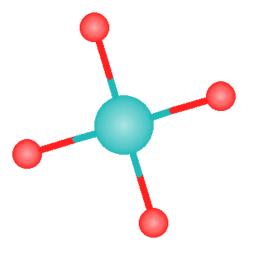
Linear

Example:  $[Ag(NH_3)_2]^+$ 


Coordination Number

Geometry

4


tetrahedral

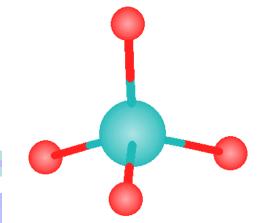
(most common)



square planar

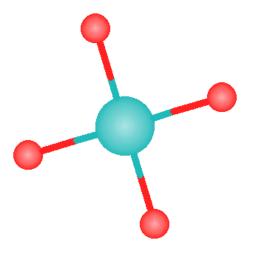
(characteristic of metal ions with 8 de-'s)




Coordination Number

Geometry

4


tetrahedral

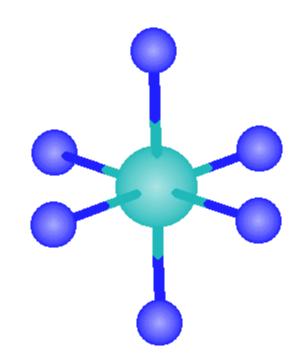
Examples:  $[Zn(NH_3)_4]^{2+}$ ,  $[FeCl_4]^{-}$ 



square planar

Example:  $[Ni(CN)_4]^{2-}$ 




Coordination Number Geometry

octahedral

# Common Geometries of Complexes Coordination Number Geometry

6

Examples:  $[Co(CN)_6]^{3-}$ ,  $[Fe(en)_3]^{3+}$ 



octahedral

# Nomenclature of Coordination Compounds: IUPAC Rules

- The cation is named before the anion
- When naming a complex:
  - Ligands are named first
    - alphabetical order
  - Metal atom/ion is named last
    - oxidation state given in Roman numerals follows in parentheses
  - Use no spaces in complex name

- The names of anionic ligands end with the suffix -o
  - -ide suffix changed to -o
  - -ite suffix changed to -ito
  - -ate suffix changed to -ato

| Ligand                 | Name    |
|------------------------|---------|
| bromide, Br            | bromo   |
| chloride, Cl           | chloro  |
| cyanide, CN-           | cyano   |
| hydroxide, OH-         | hydroxo |
| oxide, O <sup>2-</sup> | oxo     |
| fluoride, F-           | fluoro  |

| Ligand                                                   | Name        |
|----------------------------------------------------------|-------------|
| carbonate, CO <sub>3</sub> <sup>2-</sup>                 | carbonato   |
| oxalate, $C_2O_4^{2-}$                                   | oxalato     |
| sulfate, $SO_4^{2-}$                                     | sulfato     |
| thiocyanate, SCN-                                        | thiocyanato |
| thiosulfate, S <sub>2</sub> O <sub>3</sub> <sup>2-</sup> | thiosulfato |
| Sulfite, SO <sub>3</sub> <sup>2-</sup>                   | sulfito     |

- Neutral ligands are referred to by the usual name for the molecule
  - Example
    - ethylenediamine
  - Exceptions
    - water, H<sub>2</sub>O = aqua
    - ammonia, NH<sub>3</sub> = ammine
    - carbon monoxide, CO = carbonyl

- Greek prefixes are used to indicate the number of each type of ligand when more than one is present in the complex
  - di-, 2; tri-, 3; tetra-, 4; penta-, 5; hexa-, 6
- If the ligand name already contains a Greek prefix, use alternate prefixes:
  - bis-, 2; tris-, 3; tetrakis-, 4; pentakis-, 5; hexakis-, 6
  - The name of the ligand is placed in parentheses

- If a complex is an anion, its name ends with the -ate
  - appended to name of the metal

| Transition<br>Metal | Name if in Cationic<br>Complex | Name if in Anionic Complex |
|---------------------|--------------------------------|----------------------------|
| Sc                  | Scandium                       | Scandate                   |
| Ti                  | titanium                       | titanate                   |
| V                   | vanadium                       | vanadate                   |
| Cr                  | chromium                       | chromate                   |
| Mn                  | manganese                      | manganate                  |
| Fe                  | iron                           | ferrate                    |
| Co                  | cobalt                         | cobaltate                  |
| Ni                  | nickel                         | nickelate                  |
| Cu                  | Copper                         | cuprate                    |
| Zn                  | Zinc                           | zincate                    |

## Isomerism

- Isomers
  - compounds that have the same composition but a different arrangement of atoms
- Major Types
  - structural isomers
  - stereoisomers

# Structural Isomers

- Structural Isomers
  - isomers that have different bonds

# Structural Isomers

- Coordination-sphere isomers
  - differ in a ligand bonded to the metal in the complex, as opposed to being outside the coordination-sphere

# Coordination-Sphere Isomers

Example

 $[Co(NH_3)_5Cl]Br vs. [Co(NH_3)_5Br]Cl$ 

# Coordination-Sphere Isomers

Example
 [Co(NH<sub>3</sub>)<sub>5</sub>Cl]Br vs. [Co(NH<sub>3</sub>)<sub>5</sub>Br]Cl

Consider ionization in water

$$[Co(NH_3)_5Cl]Br \rightarrow [Co(NH_3)_5Cl]^+ + Br^-$$

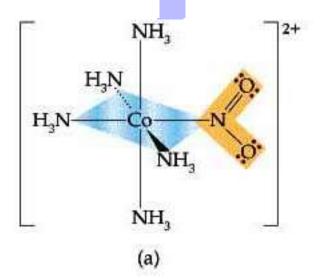
 $[Co(NH_3)_5Br]Cl \rightarrow [Co(NH_3)_5Br]^+ + Cl^-$ 

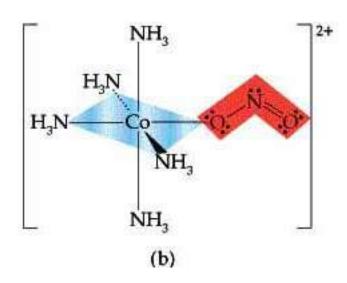
# Coordination-Sphere Isomers

- Example
   [Co(NH<sub>3</sub>)<sub>5</sub>Cl]Br vs. [Co(NH<sub>3</sub>)<sub>5</sub>Br]Cl
- Consider precipitation

$$[Co(NH_3)_5Cl]Br(aq) + AgNO_3(aq) \rightarrow [Co(NH_3)_5Cl]NO_3(aq) + AgBr(s)$$

$$[Co(NH_3)_5Br]Cl(aq) + AgNO_3(aq) \rightarrow [Co(NH_3)_5Br]NO_3(aq) + AgCl(aq)$$


# Structural Isomers


- Linkage isomers
  - differ in the atom of a ligand bonded to the metal in the complex

# Linkage Isomers

- Example
  - $[Co(NH_3)_5(ONO)]^{2+}$  vs.  $[Co(NH_3)_5(NO_2)]^{2+}$

# Linkage Isomers





# Linkage Isomers

- Example
  - $[Co(NH_3)_5(SCN)]^{2+}$  vs.  $[Co(NH_3)_5(NCS)]^{2+}$ 
    - Co-SCN vs. Co-NCS